The GLIB technique for genome-wide mapping of 5-hydroxymethylcytosine

GLIB 技术用于 5-羟甲基胞嘧啶的全基因组定位

阅读:11
作者:William A Pastor, Yun Huang, Hope R Henderson, Suneet Agarwal, Anjana Rao

Abstract

5-Hydroxymethylcytosine (5hmC) is a newly discovered DNA base present at detectable levels in most mammalian cell types and tissues. It is generated by Tet-enzyme-mediated oxidation of 5-methylcytosine (5mC). 5hmC is important both because of its potential role in regulating gene expression and because it may be an intermediate in DNA demethylation. Here we describe a technique termed GLIB (glucosylation, periodate oxidation and biotinylation), which combines several enzymatic and chemical modification steps to attach biotin to 5hmC. Biotin-containing genomic DNA fragments are then enriched using streptavidin beads, eluted and sequenced. GLIB is capable of quantitatively tagging and precipitating fragments containing a single 5hmC molecule. Sample preparation and GLIB can be conducted in 2-3 d.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。