Expression of striated activator of rho-signaling in human skeletal muscle following acute exercise and long-term training

急性运动和长期训练后人体骨骼肌中 rho 信号横纹激活因子的表达

阅读:6
作者:Stefan M Reitzner, Jessica Norrbom, Carl Johan Sundberg, Eva-Karin Gidlund

Abstract

The striated activator of rho-signaling (STARS) protein acts as a link between external stimuli and exercise adaptation such as muscle hypertrophy. However, the acute and long-term adaptational response of STARS is still unclear. This study aimed at investigating the acute and long-term endurance training response on the mRNA and protein expression of STARS and its related upstream and downstream factors in human skeletal muscle. mRNA and protein levels of STARS and related factors were assessed in skeletal muscle of healthy young men and women following an acute bout of endurance exercise (n = 15) or 12 weeks of one-legged training (n = 23). Muscle biopsies were obtained before (acute and long-term), at 30 min, 2, and 6 h following acute exercise, and at 24 h following both acute exercise and long-term training. Following acute exercise, STARS mRNA was significantly elevated 3.9-fold at 30 min returning back to baseline 24 h after exercise. STARS protein levels were numerically but nonsignificantly increased 7.2-fold at 24 h. No changes in STARS or ERRα mRNA or STARS protein expression were seen following long-term training. PGC-1α mRNA increased 1.7-fold following long-term training. MRTF-A mRNA was increased both following acute exercise and long-term training, in contrast to SRF mRNA and protein which did not change. STARS mRNA is acutely upregulated with exercise, but there is no cumulative effect to long-term training as seen in PGC-1α mRNA expression. Exercise intensity might play a role in manifestation of protein expression, suggesting a more complex regulation of STARS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。