Experimental determination of codon usage-dependent selective pressure on high copy-number genes in Saccharomyces cerevisiae

酿酒酵母中高拷贝数基因密码子使用依赖性选择压力的实验测定

阅读:5
作者:Lyne Jossé, Tarun Singh, Tobias von der Haar

Abstract

One of the central hypotheses in the theory of codon usage evolution is that in highly expressed genes, particular codon usage patterns arise because they facilitate efficient gene expression and are thus selected for in evolution. Here, we use plasmid copy number assays and growth rate measurements to explore details of the relationship between codon usage, gene expression level, and selective pressure in Saccharomyces cerevisiae. We find that when high expression levels are required, optimal codon usage is beneficial and provides a fitness advantage, consistent with evolutionary theory. However, when high expression levels are not required, optimal codon usage is surprisingly and strongly selected against. We show that this selection acts at the level of protein synthesis, and we exclude a number of molecular mechanisms as the source for this negative selective pressure including nutrient and ribosome limitations and proteotoxicity effects. These findings deepen our understanding of the evolution of codon usage bias, as well as the design of recombinant protein expression systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。