Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury

急性肾损伤后小胶质细胞功能障碍导致海马低频振幅紊乱

阅读:5
作者:Ziyang Yu, Huize Pang, Yifan Yang, Doudou Luo, Haiping Zheng, Zicheng Huang, Mingxia Zhang, Ke Ren

Aims

Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI.

Conclusions

Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.

Methods

Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples.

Results

MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). Conclusions: Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。