An approach to quantifying 3D responses of cells to extreme strain

量化细胞对极端应变的三维反应的方法

阅读:5
作者:Yuhui Li, Guoyou Huang, Moxiao Li, Lin Wang, Elliot L Elson, Tian Jian Lu, Guy M Genin, Feng Xu

Abstract

The tissues of hollow organs can routinely stretch up to 2.5 times their length. Although significant pathology can arise if relatively large stretches are sustained, the responses of cells are not known at these levels of sustained strain. A key challenge is presenting cells with a realistic and well-defined three-dimensional (3D) culture environment that can sustain such strains. Here, we describe an in vitro system called microscale, magnetically-actuated synthetic tissues (micro-MASTs) to quantify these responses for cells within a 3D hydrogel matrix. Cellular strain-threshold and saturation behaviors were observed in hydrogel matrix, including strain-dependent proliferation, spreading, polarization, and differentiation, and matrix adhesion retained at strains sufficient for apoptosis. More broadly, the system shows promise for defining and controlling the effects of mechanical environment upon a broad range of cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。