Paradoxical role of tumor necrosis factor on metabolic dysfunction and adipose tissue expansion in mice

肿瘤坏死因子对小鼠代谢功能障碍和脂肪组织扩张的矛盾作用

阅读:5
作者:Laís Bhering Martins, Marina Chaves de Oliveira, Zélia Menezes-Garcia, Débora Fernandes Rodrigues, Jaqueline Pereira Lana, Leda Quercia Vieira, Mauro Martins Teixeira, Adaliene Versiani Matos Ferreira

Conclusions

TNF signaling appears to have a paradoxical role on metabolism. Ablation of TNFR1 leads to a reduction of inflammatory cytokines in adipose tissue that is accompanied by higher adiposity in mice fed with chow diet. However, when these mice are given the HC diet, the loss of TNFR1 improves insulin sensitivity and protects mice against additional fat mass.

Methods

Male C57 BL/6 wild-type (WT) mice and TNFR1 knockout (TNFR1-/-) mice were fed with chow or with the HC diet for 16 wk.

Results

TNFR1-/- mice gained more body weight than the WT groups independent of the diet composition. TNFR1-/- mice fed with the chow diet showed higher adiposity, accompanied by higher serum leptin levels. However, these mice showed lower non-esterified fatty acid levels. Furthermore, TNFR1-/- mice had suppressed TNF, interleukin (IL)-6, and IL-10 levels in adipose tissue compared with WT mice. TNFR1-/- mice fed with the HC diet were protected from increased adiposity and glucose intolerance induced by the HC diet and exhibited lower serum resistin levels. Conclusions: TNF signaling appears to have a paradoxical role on metabolism. Ablation of TNFR1 leads to a reduction of inflammatory cytokines in adipose tissue that is accompanied by higher adiposity in mice fed with chow diet. However, when these mice are given the HC diet, the loss of TNFR1 improves insulin sensitivity and protects mice against additional fat mass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。