Melanoma-associated cancer-testis antigen 16 (CT16) regulates the expression of apoptotic and antiapoptotic genes and promotes cell survival

黑色素瘤相关癌睾丸抗原 16(CT16)调节凋亡和抗凋亡基因的表达并促进细胞存活

阅读:8
作者:Camilla Nylund, Pekka Rappu, Eveliina Pakula, Aleksi Heino, Laura Laato, Laura L Elo, Pia Vihinen, Seppo Pyrhönen, Gethin R Owen, Hannu Larjava, Markku Kallajoki, Jyrki Heino

Abstract

Cancer-testis (CT) antigens are predominantly expressed in testis or placenta, but absent in most adult tissues. During malignant transformation CT genes are often activated. CT antigen 16 (CT16, PAGE5) is frequently expressed in advanced melanoma but its biological function has been unknown. To examine the role of CT16 in cell survival we knocked it down in A2058 melanoma cells using specific siRNAs and exposed the cells to cancer drug cisplatin known to induce apoptosis. As a result, cell survival was markedly decreased. To study the effects of CT16 on cell survival in more detail, the cellular gene expression profiles were investigated after CT16 silencing in CT16 positive A2058 melanoma cells, as well as after CT16 overexpression in CT16 negative WM-266-4 melanoma cells. Among the 11 genes both upregulated by CT16 silencing and downregulated by CT16 overexpression or vice versa, 4 genes were potentially apoptotic or antiapoptotic genes. CT16 was recognized as a positive regulator of antiapoptotic metallothionein 2A and interleukin 8 genes, whereas it inhibited the expression of apoptosis inducing dickkopf 1 (DKK1) gene. In addition CT16 enhanced the expression of fatty acid binding protein 7, a known promoter of melanoma progression. The effect of CT16 on DKK1 expression was p53 independent. Furthermore, CT16 did not regulate apoptotic genes via DNA methylation. In twenty melanoma metastasis tissue samples average DKK1 mRNA level was shown to be significantly (p<0.05) lower in high CT16 expressing tumors (n = 3) when compared to the tumors with low CT16 expression (n = 17). Thus, our results indicate that CT16 promotes the survival of melanoma cells and is therefore a potential target for future drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。