Role of vegetation-associated protease activity in valve destruction in human infective endocarditis

植物相关蛋白酶活性在人类感染性心内膜炎瓣膜破坏中的作用

阅读:5
作者:Ghada Al-Salih, Nawwar Al-Attar, Sandrine Delbosc, Liliane Louedec, Elisabeth Corvazier, Stéphane Loyau, Jean-Baptiste Michel, Dominique Pidard, Xavier Duval, Olivier Meilhac

Aims

Infective endocarditis (IE) is characterized by septic thrombi (vegetations) attached on heart valves, consisting of microbial colonization of the valvular endocardium, that may eventually lead to congestive heart failure or stroke subsequent to systemic embolism. We hypothesized that host defense activation may be directly involved in tissue proteolytic aggression, in addition to pathogenic effects of bacterial colonization.

Conclusion

Our data obtained using human IE valves suggest that septic vegetations represent an important source of proteases originating from massive leukocyte recruitment and activation of the host plasminergic system. The latter forms a potential therapeutic target to minimize valvular tissue degradation independently from that induced by bacterial proteases.

Results

IE valve samples collected during surgery (n = 39) were dissected macroscopically by separating vegetations (VG) and the surrounding damaged part of the valve from the adjacent, apparently normal (N) valvular tissue. Corresponding conditioned media were prepared separately by incubation in culture medium. Histological analysis showed an accumulation of platelets and polymorphonuclear neutrophils (PMNs) at the interface between the VG and the underlying tissue. Apoptotic cells (PMNs and valvular cells) were abundantly detected in this area. Plasminogen activators (PA), including urokinase (uPA) and tissue (tPA) types were also associated with the VG. Secreted matrix metalloproteinase (MMP) 9 was also increased in VG, as was leukocyte elastase and myeloperoxidase (MPO). The presence of neutrophil extracellular traps (NETs) associating MPO and externalized nucleosomes, was shown by immunostaining in the VG. Both MPO and cell-free DNA were released in larger amounts by VG than N samples, suggesting bacterial activation of PMNs within the vegetation. Finally, evidence of proteolytic tissue damage was obtained by the release of fragments of extracellular matrix components such as fibrinogen and fibronectin, as well as protease-sensitive receptors such as the uPA receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。