Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator

诱导表达功能性囊性纤维化跨膜传导调节剂的人羊膜上皮细胞

阅读:8
作者:Sean V Murphy, Rebecca Lim, Philip Heraud, Marian Cholewa, Mark Le Gros, Martin D de Jonge, Daryl L Howard, David Paterson, Courtney McDonald, Anthony Atala, Graham Jenkin, Euan M Wallace

Abstract

Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs) to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM). We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I(-/)Cl(-)) ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。