Effect of replacement of soybean oil by Hermetia illucens fat on performance, digestibility, cecal microbiome, liver transcriptome and liver and plasma lipidomes of broilers

黑水虻脂肪替代大豆油对肉鸡生产性能、消化率、盲肠微生物组、肝脏转录组以及肝脏和血浆脂质组的影响

阅读:6
作者:Lea Schäfer, Sarah M Grundmann, Garima Maheshwari, Marcus Höring, Gerhard Liebisch, Erika Most, Klaus Eder, Robert Ringseis

Background

In contrast to protein-rich insect meal, the feed potential of insect fat is generally less explored and knowledge about the suitability of insect fat as a fat source specifically in broiler diets is still limited. In view of this, the present study aimed to comprehensively investigate the effect of partial (50%) and complete replacement of soybean oil with insect fat from Hermetia illucens (HI) larvae in broiler diets on performance, fat digestibility, cecal microbiome, liver transcriptome and liver and plasma lipidomes. Thus, 100 male, 1-day-old Cobb 500 broilers were randomly assigned to three groups and fed three different diets with either 0 (group HI-0, n = 30), 2.5% (group HI-2.5, n = 35) or 5.0% (HI-5.0, n = 35) Hermetia illucens (HI) larvae fat for 35 d.

Conclusions

Partial and complete replacement of soybean oil with HI larvae fat in broiler diets had no effect on growth performance and only modest, but no adverse effects on the cecal microbiome and the metabolic health of broilers. This suggests that HI larvae fat can be used as an alternative fat source in broiler diets, thereby, making broiler production more sustainable.

Results

Body weight gain, final body weight, feed intake, and feed:gain ratio during the whole period and apparent ileal digestibility coefficient for ether extract were not different between groups. Cecal microbial diversity did not differ between groups and taxonomic analysis revealed differences in the abundance of only four low-abundance bacterial taxa among groups; the abundances of phylum Actinobacteriota, class Coriobacteriia, order Coriobacteriales and family Eggerthellaceae were lower in group HI-5.0 compared to group HI-2.5 (P < 0.05). Concentrations of total and individual short-chain fatty acids in the cecal digesta were not different between the three groups. Liver transcriptomics revealed a total of 55 and 25 transcripts to be differentially expressed between groups HI-5.0 vs. HI-0 and groups HI-2.5 vs. HI-0, respectively (P < 0.05). The concentrations of most lipid classes, with the exception of phosphatidylethanolamine, phosphatidylglycerol and lysophosphatidylcholine in the liver and cholesterylester and ceramide in plasma (P < 0.05), and of the sum of all lipid classes were not different between groups. Conclusions: Partial and complete replacement of soybean oil with HI larvae fat in broiler diets had no effect on growth performance and only modest, but no adverse effects on the cecal microbiome and the metabolic health of broilers. This suggests that HI larvae fat can be used as an alternative fat source in broiler diets, thereby, making broiler production more sustainable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。