Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death

短期涝渍诱导小麦根细胞自噬可抑制程序性细胞死亡

阅读:6
作者:Li-Lang Zhou, Kai-Yue Gao, Li-Sha Cheng, Yue-Li Wang, Yi-Keng Cheng, Qiu-Tao Xu, Xiang-Yi Deng, Ji-Wei Li, Fang-Zhu Mei, Zhu-Qing Zhou

Abstract

Autophagy is a pathway for the degradation of cytoplasmic components in eukaryotes. In wheat, the mechanism by which autophagy regulates programmed cell death (PCD) is unknown. Here, we demonstrated that short-term waterlogging-induced autophagy inhibited PCD in root cells of wheat. The waterlogging-tolerant wheat cultivar Huamai 8 and the waterlogging-sensitive wheat cultivar Huamai 9 were used as experimental materials, and their roots were waterlogged for 0-48 h. Waterlogging stress increased the number of autophagic structures, the expression levels of autophagy-related genes (TaATG), and the occurrence of PCD in root cells. PCD manifested as morphological changes in the cell nucleus, significant enhancement of DNA laddering bands, and increases in caspase-like protease activity and the expression levels of metacaspase genes. The autophagy promoter rapamycin (RAPA) reduced PCD levels, whereas the autophagy inhibitor 3-methyladenine (3-MA) enhanced them. The expression levels of TaATG genes and the number of autophagic structures were lower in cortex cells than in stele cells, but the levels of PCD were higher in cortex cells. The number of autophagic structures was greater in Huamai 8 than in Huamai 9, but the levels of PCD were lower. In summary, our results showed that short-term waterlogging induced autophagy which could inhibit PCD. Mechanisms of response to waterlogging stress differed between cortex and stele cells and between two wheat cultivars of contrasting waterlogging tolerance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。