FGFR1 Induces Glioblastoma Radioresistance through the PLCγ/Hif1α Pathway

FGFR1 通过 PLCγ/Hif1α 通路诱导胶质母细胞瘤放射抗性

阅读:6
作者:Valérie Gouazé-Andersson, Caroline Delmas, Marion Taurand, Judith Martinez-Gala, Solène Evrard, Sandrine Mazoyer, Christine Toulas, Elizabeth Cohen-Jonathan-Moyal

Abstract

FGF2 signaling in glioblastoma induces resistance to radiotherapy, so targeting FGF2/FGFR pathways might offer a rational strategy for tumor radiosensitization. To investigate this possibility, we evaluated a specific role for FGFR1 in glioblastoma radioresistance as modeled by U87 and LN18 glioblastomas in mouse xenograft models. Silencing FGFR1 decreased radioresistance in a manner associated with radiation-induced centrosome overduplication and mitotic cell death. Inhibiting PLCγ (PLCG1), a downstream effector signaling molecule for FGFR1, was sufficient to produce similar effects, arguing that PLCγ is an essential mediator of FGFR1-induced radioresistance. FGFR1 silencing also reduced expression of HIF1α, which in addition to its roles in hypoxic responses exerts an independent effect on radioresistance. Finally, FGFR1 silencing delayed the growth of irradiated tumor xenografts, in a manner that was associated with reduced HIF1α levels but not blood vessel alterations. Taken together, our results offer a preclinical proof of concept that FGFR1 targeting can degrade radioresistance in glioblastoma, a widespread problem in this tumor, prompting clinical investigations of the use of FGFR1 inhibitors for radiosensitization. Cancer Res; 76(10); 3036-44. ©2016 AACR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。