Physical ARTEMIS:DNA-PKcs interaction is necessary for V(D)J recombination

ARTEMIS 与 DNA-PKcs 的物理相互作用是 V(D)J 重组所必需的。

阅读:2
作者:Doris Niewolik ,Klaus Schwarz

Abstract

The nuclease ARTEMIS and the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are involved in the repair of physiological and pathogenic DNA double strand breaks. Both proteins are indispensable for the hairpin-opening activity in V(D)J recombination and therefore essential for the adaptive immune response. ARTEMIS and DNA-PKcs interact, however experimental evidence for in vivo significance is missing. We demonstrate that mutations abolishing this protein-protein interaction affect nuclease function. In DNA-PKcs, mutation L3062R impairs the physical interaction with ARTEMIS and was previously identified as pathogenic variant, resulting in radiosensitive severe combined immunodeficiency. In ARTEMIS, specific mutations in two conserved regions affect interaction with DNA-PKcs. In combination they impair V(D)J recombination activity, independent of ARTEMIS autoinhibitory self-interaction between the ARTEMIS C-terminus and the N-terminal nuclease domain. We describe small fragments from both proteins, capable of interaction with the corresponding full-length partner proteins: In DNA-PKcs 42 amino acids out of FAT region 2 (PKcs3041-3082) can mediate interaction with ARTEMIS. In the nuclease we have defined 26 amino acids (ARM378-403) as minimal DNA-PKcs interacting fragment. The exact mapping of the ARTEMIS:DNA-PKcs interaction may pave the way for the design of specific inhibitors targeting the repair of DNA double strand breaks.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。