Hypoxia-induced FOXO4/LDHA axis modulates gastric cancer cell glycolysis and progression

缺氧诱导的 FOXO4/LDHA 轴调节胃癌细胞糖酵解和进展

阅读:6
作者:Xiao-Hong Wang, Zhong-Hua Jiang, Hong-Mei Yang, Yu Zhang, Li-Hua Xu

Aim

We previously identified forkhead box (FOX) O4 mRNA as a predictor in gastric cancer (GC). However, the underlying mechanism has yet to be elucidated. We aimed to illustrate the mechanism by which FOXO4 regulated glycolysis under hypoxia in GC.

Conclusions

Our data suggested that FOXO4 plays a key role in the regulation of glycolysis in GC, and disrupting the HIF-1α-FOXO4-LDHA axis might be a promising therapeutic strategy for GC.

Methods

FOXO4 protein expression was investigated by immunohistochemical staining of 252 GC and their normal adjacent tissues. We restored or silenced FOXO4 expression in GC cell lines to explore the underlying mechanisms.

Results

FOXO4 was downregulated in GC. Loss of FOXO4 expression was validated in univariate and multivariate survival analysis as an independent prognostic predictor for overall survival (P < 0.05) and disease-free survival (P<0.05). Restored FOXO4 expression significantly impaired the glycolysis rate in GC cells, while silencing FOXO4 expression enhanced glycolysis rate. FOXO4 expression was inversely associated with maximum standardized uptake value in mice models and patient samples. Mechanistically, FOXO4 bound to the glycolytic enzyme lactate dehydrogenase (LDH)A promoter and inactivated its activity in a dose-dependent manner (P < 0.05). Finally, we determined that FOXO4 was a transcriptional target of hypoxia-inducible factor (HIF) -1α, which is central in response to hypoxia. Conclusions: Our data suggested that FOXO4 plays a key role in the regulation of glycolysis in GC, and disrupting the HIF-1α-FOXO4-LDHA axis might be a promising therapeutic strategy for GC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。