Transcriptional expression patterns triggered by chemically distinct neuroprotective molecules

由化学性质不同的神经保护分子触发的转录表达模式

阅读:3
作者:D J Pappas, P A Gabatto, D Oksenberg, P Khankhanian, S E Baranzini, L Gan, J R Oksenberg

Abstract

Glutamate-mediated excitotoxicity has been purported to underlie many neurodegenerative disorders. A subtype of glutamate receptors, namely N-methyl-d-aspartate (NMDA) receptors, has been recognized as potential targets for neuroprotection. To increase our understanding of the mechanisms that underlie this neuroprotection, we employed a mouse model of glutamate receptor-induced excitotoxic injury. Primary cortical neurons derived from postnatal day-0 CD-1 mice were cultured in the presence or absence of neuroprotective molecules and exposed to NMDA. Following a recovery period, whole genome expression was measured by microarray analysis. We used a combination of database and text mining, as well as systems modeling to identify signatures within the differentially expressed genes. While molecules differed in their mechanisms of action, we found significant overlap in the expression of a core group of genes and pathways. Many of these molecules have clear links to neuronal protection and survival, including ion channels, transporters, as well as signaling pathways including the mitogen-activated protein kinase (MAPK), the Toll-like receptor (TLR), and the hypoxic inducible factor (HIF). Within the TLR pathway, we also discovered a significant enrichment of interferon regulatory factor 7 (IRF7)-regulated genes. Knockdown of Irf7 by RNA interference resulted in reduced survival following NMDA treatment. Given the prominent role that IRF7 plays in the transduction of type-I interferons (IFNs), we also tested whether type-I IFNs alone functioned as neuroprotective agents and found that type-I IFNs were sufficient to promote neuronal survival. Our data suggest that the TLR/IRF7/IFN axis plays a significant role in recovery from glutamate-induced excitotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。