Interlaboratory comparison of high-throughput protein biomarker assay quantifications for radiation exposure classification

实验室间高通量蛋白质生物标志物检测定量比较用于辐射暴露分类

阅读:5
作者:Leah Nemzow, Thomas Boehringer, Jessica Mayenburg, Lindsay A Beaton-Green, Ruth C Wilkins, Helen C Turner

Abstract

In the event of a widespread radiological incident, thousands of individuals will require rapid assessment of exposure using validated biodosimetry assays to inform clinical triage. In this scenario, multiple biodosimetry laboratories may be necessary for large-volume sample processing. To meet this need, we have developed a high-throughput assay for the rapid measurement of intracellular protein biomarkers in human peripheral blood samples using an Imaging Flow Cytometry (IFC) platform. The objective of this work was to harmonize and validate the reproducibility of our blood biomarker assay for radiation exposure across three IFC instruments, two located at Columbia University (CU) and the third at Health Canada. The Center for Radiological Research (CRR) at CU served as the central laboratory and reference instrument, where samples were prepared in triplicate, labeled with two radiation responsive leukocyte biomarkers (BAX and phosphor-p53 (Ser37)), and distributed for simultaneous interrogation by each IFC. Initial tests showed that significantly different baseline biomarker measurements were generated on each instrument when using the same acquisition settings, suggesting that harmonization of signal intensities is necessary. Subsequent tests harmonized biomarker measurements after irradiation by modulating laser intensity using two reference materials: unstained samples and standardized rainbow beads. Both methods generated measurements on each instrument without significant differences between the new and references instruments, allowing for the use of one master template to quantify biomarker expression across multiple instruments. Deming regression analyses of 0-5 Gy dose-response curves showed overall good correlation of BAX and p53 values across new and reference instruments. While Bland-Altman analyses indicated low to moderate instrument biases, ROC Curve analyses ultimately show successful discrimination between exposed and unexposed samples on each instrument (AUC values > 0.85).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。