Hepatic insulin sensitivity is improved in high-fat diet-fed Park2 knockout mice in association with increased hepatic AMPK activation and reduced steatosis

高脂饮食喂养的 Park2 基因敲除小鼠的肝脏胰岛素敏感性得到改善,同时肝脏 AMPK 活性增加,脂肪变性减少

阅读:10
作者:Lia R Edmunds, Brydie R Huckestein, Mario Kahn, Dongyan Zhang, Yanxia Chu, Yingze Zhang, Stacy G Wendell, Gerald I Shulman, Michael J Jurczak

Abstract

Park2 is an E3 ubiquitin ligase known for its role in mitochondrial quality control via the mitophagy pathway. Park2 KO mice are protected from diet-induced obesity and hepatic insulin sensitivity is improved in high-fat diet (HFD)-fed Park2 KO mice even under body weight-matched conditions. In order to better understand the cellular mechanism by which Park2 KO mice are protected from diet-induced hepatic insulin resistance, we determined changes in multiple pathways commonly associated with the pathogenesis of insulin resistance, namely levels of bioactive lipid species, activation of the endoplasmic reticulum (ER) stress response and changes in cytokine levels and signaling. We report for the first time that whole-body insulin sensitivity is unchanged in regular chow (RC)-fed Park2 KO mice, and that liver diacylglycerol levels are reduced and very-long-chain ceramides are increased in Park2 KO mice fed HFD for 1 week. Hepatic transcriptional markers of the ER stress response were reduced and plasma tumor necrosis factor-α (TNFα), interleukin-6 and -10 (IL6, IL10) were significantly increased in HFD-fed Park2 KO mice; however, there were no detectable differences in hepatic inflammatory signaling pathways between groups. Interestingly, hepatic adenylate charge was reduced in HFD-fed Park2 KO liver and was associated increased activation of AMPK. These data suggest that negative energy balance that contributed to protection from obesity during chronic HFD manifested at the level of the hepatocyte during short-term HFD feeding and contributed to the improved hepatic insulin sensitivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。