The influence of fibrillin-1 and physical activity upon tendon tissue morphology and mechanical properties in mice

原纤维蛋白-1和体力活动对小鼠肌腱组织形态和力学性能的影响

阅读:4
作者:Peter H T Tran, Tanja Skrba, Elisabeth Wondimu, Giuseppina Galatioto, René Brüggebusch Svensson, Annesofie T Olesen, Abigail L Mackey, S Peter Magnusson, Francesco Ramirez, Michael Kjaer

Abstract

Fibrillin-1 mutations cause pathological changes in connective tissue that constitute the complex phenotype of Marfan syndrome. In this study, we used fibrillin-1 hypomorphic and haploinsufficient mice (Fbn1mgr/mgR and Fbn1+/- mice, respectively) to investigate the impact of fibrillin-1 deficiency alone or in combination with regular physical activity on tendon tissue morphology and mechanical properties. Morphological and biomechanical analyses revealed that Fbn1mgr/mgR but not Fbn1+/- mice displayed smaller tendons with physical properties that were unremarkable when normalized to tendon size. Fbn1mgR/mgR mice (n = 43) Fbn1+/- mice (n = 27) and wild-type mice (WT, n = 25) were randomly assigned to either control cage conditions (n = 54) or to a running on a running wheel for 4 weeks (n = 41). Both fibrillin-1-deficient mice ran voluntarily on the running wheel in a manner similar to WT mice (3-4 km/24 h). Regular exercise did not mitigate aneurysm progression in Fbn1mgR/mgR mice (P < 0.05) as evidenced by unmodified median survival. In spite of the smaller size, tendons of fibrillin-1-deficient mice subjected to regular exercise showed no evidence of overt histopathological changes or tissue overload. We therefore concluded that lack of optimal fibrillin-1 synthesis leads to a down regulation of integrated tendon formation, rather than to a loss of tendon quality, which also implies that fibrillin-1 deficiency in combination with exercise is not a suitable animal model for studying the development of tendon overuse (tendinopathy).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。