A novel role of MMP-13 for murine DC function: its inhibition dampens T-cell activation

MMP-13 对小鼠树突状细胞功能的新作用:抑制 MMP-13 可抑制 T 细胞活化

阅读:8
作者:Juliane Bartmann, Marion Frankenberger, Claus Neurohr, Oliver Eickelberg, Elfriede Noessner, Werner von Wulffen

Abstract

Dendritic cells (DCs) have been shown to express matrix metalloproteinase 13 (MMP-13), but little is known about its specific function in DCs and its role in inflammatory conditions. In the present study, we describe a novel role of MMP-13 in regulating the immunostimulatory function of murine DCs through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. MMP-13 expression was confirmed in bone marrow-derived DCs at both the mRNA and the protein level and, furthermore, at the activity level. Remarkably, LPS treatment strongly enhanced MMP-13 mRNA expression as well as MMP-13 activity, indicating an important role of MMP-13 in inflammatory processes. Functionally, MMP-13 inhibition did not influence the DC migratory capacity, while endocytosis of ovalbumin was significantly decreased. Inhibition of MMP-13 lowered the capability of murine DCs to activate CD8+ T cells, apparently through reducing MHC-I surface presentation. Decreased surface expression of CD11c on DCs, as well as changes in the DC cytokine/chemokine profile after MMP-13 inhibition, emphasizes the influence of MMP-13 on DC function. Moreover, T-cell-targeting cytokines such as IL-12, IL-23 and IL-6 were significantly reduced. Collectively, our data reveal a novel involvement of MMP-13 in regulating DC immunobiology through moderating MHC-I surface presentation, endocytosis and cytokine/chemokine secretion. Furthermore, the reduced MHC-I surface presentation by DCs resulted in a poor CD8+ T-cell response in vitro This novel finding indicates that MMP-13 might be a promising target for therapeutic intervention in inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。