Interleukin-35 attenuates collagen-induced arthritis through suppression of vascular endothelial growth factor and its receptors

白细胞介素-35 通过抑制血管内皮生长因子及其受体减轻胶原诱导性关节炎

阅读:8
作者:Suqin Wu, Yunxia Li, Yuxuan Li, Lutian Yao, Tiantian Lin, Shenyi Jiang, Hui Shen, Liping Xia, Jing Lu

Conclusion

These findings show that IL-35 may represent a novel therapeutic agent for RA, and the probable mechanisms may rely on inhibiting VEGF and its receptors Flt-1 and Flk-1.

Methods

We established a CIA mouse model and injected IL-35 intraperitoneally. The articular index (AI) was measured based on the amount of erythema, swelling, or joint rigidity and synovial histology was measured by hematoxylin and eosin staining (HE staining). The levels of VEGF, Flt-1, Flk-1, and von Willebrand factor (vWF) expression in CIA synovial tissue were determined by immunohistochemistry. The mRNA and protein expression levels of VEGF, Flt-1, Flk-1, TNF-α, and INF-γ were detected by reverse transcription PCR (RT-PCR) and western blots, respectively.

Objective

To investigate the effect of interleukin-35 (IL-35) on vascular endothelial growth factor (VEGF) and its receptors, Flt-1 and Flk-1, in a collagen-induced arthritis (CIA) mouse model of rheumatoid arthritis (RA).

Results

The IL-35 treatment decreased the AI and the synovial histological scores of CIA mice. Immunohistochemistry results revealed that the IL-35 treatment downregulated VEGF, Flt-1, Flk-1, and vWF expression in the CIA mice. RT-PCR results showed that the IL-35-treated mice had lower levels of VEGF, Flt-1, Flk-1, and TNF-α mRNA expression than those of the PBS-treated mice. While there was no significant difference in the level of INF-γ mRNA expression between IL-35-treated and PBS-treated mice. Western blot results showed that the IL-35 treatment downregulated the levels of VEGF, Flt-1, Flk-1, and TNF-α in CIA mice, but the level of INF-γ was not significantly affected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。