Docosahexaenoic fatty acid reduces the pro-inflammatory response induced by IL-1β in astrocytes through inhibition of NF-κB and AP-1 transcription factor activation

二十二碳六烯脂肪酸通过抑制 NF-κB 和 AP-1 转录因子活化来降低 IL-1β 在星形胶质细胞中诱发的促炎反应

阅读:9
作者:Emilia Zgórzyńska, Dawid Stulczewski, Barbara Dziedzic, Kuan-Pin Su, Anna Walczewska

Background

Astrocytes are responsible for a broad range of functions that maintain homeostasis in the brain. However, their response to the pro-inflammatory cytokines released by activated microglia in various neurological pathologies may exacerbate neurodegenerative processes. Accumulating evidence suggests that omega-3 docosahexaenoic fatty acid (DHA) has an anti-inflammatory effect in various cell cultures studies and in a variety of neurological disorders. In this study we examined the mechanism involved in the inhibition of the pro-inflammatory response by DHA in astrocytes treated with IL-1β.

Conclusions

These results indicate that DHA is a powerful factor that reduces the pro-inflammatory response in astrocytes. Consequently, successful introduction of DHA into the astrocyte membranes can attenuate neuroinflammation, which is a key factor of age-related neurodegenerative disorders.

Results

Activation of the transcription factors NF-κB and AP-1 was measured in IL-1β-treated primary astrocytes incubated with various concentrations of DHA. COX-2 and iNOS protein expression was determined by Western blot, and TNF-α and IL-6 secretion was measured using ELISA-based assays. DHA treatment inhibited translocation of p65NF-κB to the nucleus, significantly lowered p65NF-κB protein level and fluorescence of p65NF-κB in the nucleus, reduced dose-dependently IκB protein phosphorylation, and the binding of the AP-1 transcription factor members (c-Jun/c-Fos) to the specific TPA-response element (TRE) of DNA. In addition, the expression of pro-inflammatory COX-2 and iNOS proteins was downregulated and TNF-α and IL-6 secretion was also reduced. Conclusions: These results indicate that DHA is a powerful factor that reduces the pro-inflammatory response in astrocytes. Consequently, successful introduction of DHA into the astrocyte membranes can attenuate neuroinflammation, which is a key factor of age-related neurodegenerative disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。