Resolvin D1 and lipoxin A4 improve alveolarization and normalize septal wall thickness in a neonatal murine model of hyperoxia-induced lung injury

在高氧诱发肺损伤的新生小鼠模型中,Resolvin D1 和脂氧素 A4 可改善肺泡化并使隔膜壁厚度正常化

阅读:8
作者:Camilia R Martin, Munir M Zaman, Calvin Gilkey, Maria V Salguero, Hatice Hasturk, Alpdogan Kantarci, Thomas E Van Dyke, Steven D Freedman

Background

The critical fatty acids Docosahexaenoic Acid (DHA) and Arachidonic Acid (AA) decline in preterm infants within the first postnatal week and are associated with neonatal morbidities, including bronchopulmonary dysplasia (BPD). DHA and AA are precursors to downstream metabolites that terminate the inflammatory response. We hypothesized that treatment with Resolvin D1 and/or Lipoxin A4 would prevent lung injury in a murine model of BPD.

Conclusion

The histologic and biochemical changes seen in hyperoxia-induced lung injury in this murine model can be reversed by the addition of DHA and AA fatty acid downstream metabolites that terminate the inflammatory pathways and modulate growth factors. These fatty acids or their metabolites may be novel therapies to prevent or treat lung injury in preterm infants.

Methods

C57/BL6 pups were randomized at birth to Room Air, Hyperoxia (>90% oxygen), Hyperoxia + Resolvin D1, Hyperoxia + Lipoxin A4, or Hyperoxia + Resolvin D1/Lipoxin A4. Resolvin D1 and/or Lipoxin A4 (2 ng/g) were given IP on days 0, 3, 6, and 9. On day 10, mice were sacrificed and lungs collected for morphometric analyses including Mean Linear Intercept (MLI), Radial Alveolar Count (RAC), and Septal Thickness (ST); RT-PCR analyses of biomarkers of lung development and inflammation; and ELISA for TGFβ1 and TGFβ2. Result: The increased ST observed with hyperoxia exposure was normalized by both Resolvin D1 and Lipoxin A4; while, hyperoxia-induced alveolar simplification was attenuated by Lipoxin A4. Relative to hyperoxia, Resolvin D1 reduced the gene expression of CXCL2 (2.9 fold), TIMP1 (6.7 fold), and PPARγ (4.8 fold). Treatment with Lipoxin A4 also led to a reduction of CXCL2 (2.4 fold) while selectively increasing TGFβ2 (2.1 fold) and Smad3 (1.58 fold).

Objective

To determine the effect of Resolvin D1 and/or Lipoxin A4 on hyperoxia-induced lung injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。