Biomass-Tuned Reduced Graphene Oxide@Zn/Cu: Benign Materials for the Cleanup of Selected Nonsteroidal Anti-inflammatory Drugs in Water

生物质调控的还原氧化石墨烯@Zn/Cu:用于清除水中非甾体抗炎药物的良性材料

阅读:7
作者:Ajibola A Bayode, Mercy T Folorunso, Brigitte Helmreich, Martins O Omorogie

Abstract

The persistent increase in the amount of nonsteroidal anti-inflammatory drugs such as ibuprofen (IBP) and diclofenac (DCF) in water bodies is alarming, thereby calling for a need to be addressed. To address this challenge, a bimetallic (copper and zinc) plantain-based adsorbent (CZPP) and reduced graphene oxide modified form (CZPPrgo) was prepared by facile synthesis for the removal of ibuprofen (IBP) and diclofenac (DCF) in water. Both the CZPP and CZPPrgo were characterized by different techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and pHpzc analysis. FTIR and XRD confirmed the successful synthesis of the CZPP and CZPPrgo. The adsorption of the contaminants was carried out in a batch system, and several operational variables were optimized. The adsorption is affected by the initial concentration of the pollutants (5-30 mg·L-1), the adsorbent dose (0.05-0.20 g), and pH (2.0-12.0). The CZPPrgo has the best performance with maximum adsorption capacities of 148 and 146 mg·g-1 for removing IBP and DCF from water, respectively. The experimental data were fitted into different kinetic and isotherm models; the removal of IBP and DCF follows the pseudo-second order, which can be best explained by the Freundlich isotherm model. The reuse efficiency was above 80% even after four adsorption cycles. This shows that the CZPPrgo is a promising adsorbent for removing IBP and DCF in water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。