Multienzyme-Mimic Ultrafine Alloyed Nanoparticles in Metal Organic Frameworks for Enhanced Chemodynamic Therapy

金属有机骨架中的多酶模拟超细合金纳米粒子用于增强化学动力学治疗

阅读:7
作者:Peipei Yang, Jia Tao, Fengfeng Chen, Yuying Chen, Jiaqi He, Kui Shen, Peng Zhao, Yingwei Li

Abstract

Nanozyme-based chemodynamic therapy (CDT) has emerged as an effective cancer treatment because of its low side effects and without the requirement of exogenous energy. The therapeutic effect of CDT highlights the pivotal importance of active sites, H2 O2 supplement and the glutathione (GSH) depletion of a nanozyme. The construction of a single kind of catalyst with multiple functions for the enhanced CDT is still a big challenge. In this work, seven types of bimetallic nanoparticles are synthesized using a metal-organic framework (MOF) as a stable host instead of a Fenton or Fenton-like ions supplier. Among them, Cu-Pd@MIL-101 with an alloy loading of 9.5 wt% modified by PEG (9.5% CPMP) is found to exhibit the highest peroxidase (POD) like activity combined with a superoxide dismutase (SOD) mimic activity and the function of GSH depletion. The in vivo results suggest that the stable and ultrafine nanoparticles possess favorable CDT effect for tumor and good biosafety as well as biocompatibility. This work has provided a credible strategy to construct nanozymes with an excellent activity and may pave a new way for the design of enhanced tumor CDT treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。