Imatinib disturbs lysosomal function and morphology and impairs the activity of mTORC1 in human hepatocyte cell lines

伊马替尼扰乱溶酶体功能和形态,并削弱人类肝细胞系中 mTORC1 的活性

阅读:9
作者:Noëmi Johanna Roos, Riccardo Vincenzo Mancuso, Gerda Mawududzi Sanvee, Jamal Bouitbir, Stephan Krähenbühl

Abstract

The tyrosine kinase inhibitors (TKIs) imatinib and lapatinib are associated with severe hepatotoxicity, whose mechanisms are currently under investigation. As amphiphilic drugs, imatinib and lapatinib enrich in lysosomes. In the present study, we investigated their effects on lysosomal morphology and function in HepG2 and HuH-7 cells and explored possible links between lysosomal dysfunction and hepatotoxicity. Both TKIs increased the lysosomal volume time and concentration-dependently in HepG2 and HuH-7 cells. In HepG2 cells, lapatinib and imatinib raised the lysosomal pH and destabilized the lysosomal membrane, thereby impairing lysosomal proteolytic activity such as cathepsin B processing. Imatinib activated the transcription factor EB (TFEB), a regulator of lysosomal biogenesis and function, as demonstrated by nuclear TFEB accumulation and increased expression of TFEB-target genes. Because of lysosomal dysfunction, imatinib impaired mTORC1 activation, a protein complex activated on the lysosomal surface, which explained TFEB activation. HepG2 cells treated with imatinib showed increased levels of MAP1LC3A/B-II and of ATG13 (S318) phosphorylation, indicating induction of autophagy due to TFEB activation. Finally, imatinib induced apoptosis in HepG2 cells in a time and concentration-dependent manner, explained by lysosomal and mitochondrial toxicity. Our findings provide a new lysosome-centered mechanism for imatinib-induced hepatotoxicity that could be extended to other lysosomotropic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。