Synchronous Removal of Arsenic and Fluoride from Aqueous Solution: A Facile Approach to Fabricate Novel Functional Metallopolymer Microspheres

同步去除水溶液中的砷和氟化物:一种制造新型功能性金属聚合物微球的简便方法

阅读:4
作者:Anil R Gupta, Vipin C Joshi, Anshul Yadav, Saroj Sharma

Abstract

Concurrence of arsenic (As) and fluoride (F-) ions in groundwater is a serious concern due to their fatal effects. Herein, an attempt was made to fabricate quaternized poly(zirconyl dimethacrylate-co-vinylbenzyl chloride)] (ZrVBZ), a metallopolymeric microsphere in three-dimensional shape with a porous texture. The synthesized ZrVBZ was utilized for the synchronal removal of As and F- from water. Techniques such as Fourier transform infrared spectroscopy, 13C-nuclear magnetic resonance, scanning electron microscopy, and Brunauer-Emmett-Teller surface area were used to characterize the ZrVBZ. The maximum adsorption capacity of ZrVBZ for both fluoride and arsenic (q max F-: 116.5 mg g-1, q max As(V): 7.0 mg g-1, and q max As(III): 6.5 mg g-1) at given experimental conditions (adsorbents' dose: 0.250 g L-1, feed of F-: 50 mg L-1, As(V)/As(III): 2000 μg L-1, and pH: 7.0 ± 0.2) was ascribed to the porous spherical architecture with dual functional sites to facilitate adsorption. The adsorption followed pseudo-second-order kinetics with a correlation coefficient of 0.996, 0.997, and 0.990 for F-, As(V), and As(III), respectively. The isotherm data fitted to the Langmuir isotherm model, and the maximum capacity was 121.5, 7.246, and 6.68 mg g-1 for F-, As(V), and As(III), respectively. The results of this study indicated that ZrVBZ could be used as an effective adsorbent for the simultaneous removal of F-, As(V), and As(III) from an aqueous medium.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。