Isothiazolone-Nitroxide Hybrids with Activity against Antibiotic-Resistant Staphylococcus aureus Biofilms

异噻唑酮-硝基氧化物混合物对抗生素耐药性金黄色葡萄球菌生物膜具有活性

阅读:4
作者:Anthony D Verderosa, Sophia Hawas, Jessica Harris, Makrina Totsika, Kathryn E Fairfull-Smith

Abstract

Isothiazolones are widely used as biocides in industrial processing systems and personal care products, but their use to treat infections in humans has been hampered by their inherent cytotoxicity. Herein, we report a strategy to alleviate isothiazolone toxicity and improve antibacterial and antibiofilm potency by functionalization with a nitroxide moiety. Isothiazolone-nitroxide hybrids 6 and 22 were prepared over three steps in moderate yields (58 and 36%, respectively) from (Z)-3-(benzylsulfanyl)-propenoic acid. Hybrid 22 displayed better activity (minimum inhibitory concentration (MIC) = 35 μM) than the widely used methylisothiazolinone (MIT 1, MIC = 280 μM) against methicillin-susceptible Staphylococcus aureus (MSSA). Hybrid 22 was even more active against drug-resistant strains, such as vancomycin-resistant Staphylococcus aureus (VRSA, MIC = 8.75 μM) over MIT 1 (MIC = 280 μM). The enhanced antibacterial activity of hybrid 22 over MIT 1 was retained against established MSSA and VRSA biofilms, with minimum biofilm eradication concentration (MBEC) values of 35 and 70 μM, respectively, for 22 (the MBEC value for MIT 1 against both strains was ≥280 μM). No toxicity was observed in human epithelial T24 cells treated with hybrid 22 in concentrations up to 560 μM using a lactate dehydrogenase assay.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。