Transplantation of glutamatergic neuronal precursor cells in the paraventricular thalamus and claustrum facilitates awakening with recovery of consciousness

移植室旁丘脑和隔膜中的谷氨酸能神经元前体细胞有助于苏醒和恢复意识

阅读:4
作者:Tong Zhao, Naili Wei, Tianwen Li, Kezhu Chen, Wenqiang Cui, Zhifu Wang, Fan Wang, Yuanxiang Lin, Jianhong Zhu

Background

Stem cells offer a promising therapeutic strategy for patients with disorders of consciousness (DOC) after severe traumatic brain injury (TBI), but the optimal transplantation sites and cells are not clear. Although the paraventricular thalamus (PVT) and claustrum (CLA) are associated with consciousness and are candidate transplantation targets, few studies have been designed to investigate this possibility.

Conclusion

In this study, we found that the deterioration in the level and content of consciousness after TBI was associated with a large reduction in glutamatergic neurons within the PVT and CLA. Transplantation of glutamatergic neuronal precursor cells could play a beneficial role in promoting arousal and recovery of consciousness. Thus, these findings have the potential to provide a favorable basis for promoting awakening and recovery in patients with DOC.

Methods

Controlled cortical injury (CCI) was performed to establish a mouse model of DOC. CCI-DOC paradigm was established to investigate the role of excitatory neurons of PVT and CLA in disorders of consciousness. The role of excitatory neuron transplantation in promoting arousal and recovery of consciousness was determined by optogenetics, chemogenetics, electrophysiology, Western blot, RT-PCR, double immunofluorescence labeling, and neurobehavioral experiments.

Results

After CCI-DOC, neuronal apoptosis was found to be concentrated in the PVT and CLA. Prolonged awaking latency and cognitive decline were also seen after destruction of the PVT and CLA, suggesting that the PVT and CLA may be key nuclei in DOC. Awaking latency and cognitive performance could be altered by inhibiting or activating excitatory neurons, implying that excitatory neurons may play an important role in DOC. Furthermore, we found that the PVT and CLA function differently, with the PVT mainly involved in arousal maintenance while the CLA plays a role mainly in the generation of conscious content. Finally, we found that by transplanting excitatory neuron precursor cells in the PVT and CLA, respectively, we could facilitate awakening with recovery of consciousness, which was mainly manifested by shortened awaking latency, reduced duration of loss of consciousness (LOC), enhanced cognitive ability, enhanced memory, and improved limb sensation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。