Nanoplatform based on carbon nanoparticles loaded with doxorubicin enhances apoptosis by generating reactive oxygen species for effective cancer therapy

基于载有阿霉素的碳纳米粒子的纳米平台通过产生活性氧来增强细胞凋亡,从而有效治疗癌症

阅读:5
作者:Yusheng Liu, Junfeng Zhang, Chunying Wu, Yigui Lai, Huijie Fan, Qiang Wang, Zhaolin Lin, Jishang Chen, Xiaoshan Zhao, Xuefeng Jiang

Abstract

At present, due to its wide application and relatively low cost, chemotherapy remains a clinically important cancer treatment option; however, a number of chemotherapeutic drugs have important limitations, such as lack of specificity, high toxicity and side effects, and multi-drug resistance. The emergence of nanocarriers has removed numerous clinical application limitations of certain antitumor chemotherapy drugs and has been widely used in the treatment of tumors with nanodrugs. The present study used carbon nanoparticles (CNPs) as a nanocarrier for doxorubicin (DOX) to form the novel nanomedicine delivery system (CNPs@DOX)was demonstrated by UV-vis and fluorescence spectrophotometry, ζ potential and TEM characterization experiments. The results confirmed the successful preparation of CNPs@DOX nanoparticles with a particle size of 96±17 nm, a wide range of absorption and a negatively charged surface. Furthermore, CNPs@DOX produced more reactive oxygen species and induced apoptosis, and thus exhibited higher cytotoxicity than DOX, which is a small molecule anticancer drug without a nanocarrier delivery system.. The present study provides a strategy for the treatment of tumors with nanomedicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。