Original Research: Generation of non-deletional hereditary persistence of fetal hemoglobin β-globin locus yeast artificial chromosome transgenic mouse models: -175 Black HPFH and -195 Brazilian HPFH

原创研究:非缺失性遗传持久性胎儿血红蛋白β-珠蛋白基因座酵母人工染色体转基因小鼠模型的产生:-175黑人HPFH和-195巴西HPFH

阅读:5
作者:Carolina A Braghini, Flavia C Costa, Halyna Fedosyuk, Renee Y Neades, Lesya V Novikova, Matthew P Parker, Robert D Winefield, Kenneth R Peterson

Abstract

Fetal hemoglobin is a major genetic modifier of the phenotypic heterogeneity in patients with sickle cell disease and certain β-thalassemias. Normal levels of fetal hemoglobin postnatally are approximately 1% of total hemoglobin. Patients who have hereditary persistence of fetal hemoglobin, characterized by elevated synthesis of γ-globin in adulthood, show reduced disease pathophysiology. Hereditary persistence of fetal hemoglobin is caused by β-globin locus deletions (deletional hereditary persistence of fetal hemoglobin) or γ-globin gene promoter point mutations (non-deletional hereditary persistence of fetal hemoglobin). Current research has focused on elucidating the pathways involved in the maintenance/reactivation of γ-globin in adult life. To better understand these pathways, we generated new β-globin locus yeast artificial chromosome transgenic mice bearing the (A)γ-globin -175 T > C or -195 C > G hereditary persistence of fetal hemoglobin mutations to model naturally occurring hereditary persistence of fetal hemoglobin. Adult -175 and -195 mutant β-YAC mice displayed a hereditary persistence of fetal hemoglobin phenotype, as measured at the mRNA and protein levels. The molecular basis for these phenotypes was examined by chromatin immunoprecipitation of transcription factor/co-factor binding, including YY1, PAX1, TAL1, LMO2, and LDB1. In -175 HPFH versus wild-type samples, the occupancy of LMO2, TAL1 and LDB1 proteins was enriched in HPFH mice (5.8-fold, 5.2-fold and 2.7-fold, respectively), a result that concurs with a recent study in cell lines showing that these proteins form a complex with GATA-1 to mediate long-range interactions between the locus control region and the (A)γ-globin gene. Both hereditary persistence of fetal hemoglobin mutations result in a gain of (A)γ-globin activation, in contrast to other hereditary persistence of fetal hemoglobin mutations that result in a loss of repression. The mice provide additional tools to study γ-globin gene expression and may reveal new targets for selectively activating fetal hemoglobin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。