Environmentally relevant mixtures of phthalates and phthalate metabolites differentially alter the cell cycle and apoptosis in mouse neonatal ovaries†

与环境相关的邻苯二甲酸酯和邻苯二甲酸酯代谢物混合物对小鼠新生卵巢的细胞周期和细胞凋亡有差异

阅读:6
作者:Genoa R Warner, Daryl D Meling, Kathy M De La Torre, Karen Wang, Jodi A Flaws

Abstract

Phthalates are a group of chemicals used as additives in various consumer products, medical equipment, and personal care products. Phthalates and their metabolites are consistently detected in humans, indicating widespread and continuous exposure to multiple phthalates. Thus, environmentally relevant mixtures of phthalates and phthalate metabolites were investigated to determine the effects of phthalates on the function of the ovary during the neonatal period of development. Neonatal ovaries from CD-1 mice were cultured with dimethyl sulphoxide (DMSO; vehicle control), phthalate mixture (0.1-100 μg/mL), or phthalate metabolite mixture (0.1-100 μg/mL). The phthalate mixture was composed of 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. The phthalate metabolite mixture was composed of 37% monoethyl phthalate, 19% mono(2-ethylhexyl) phthalate, 15% monobutyl phthalate, 10% monoisononyl phthalate, 10% monoisobutyl phthalate, and 8% monobenzyl phthalate. After 96 h of culture, ovaries were harvested for histological analysis of folliculogenesis, gene expression analysis of cell cycle and apoptosis regulators, and immune staining for cell proliferation and apoptosis. The metabolite mixture significantly decreased the number and percentage of abnormal follicles (100 μg/mL) compared to controls. The metabolite mixture also significantly increased the expression of cell cycle inhibitors (100 μg/mL) and the antiapoptotic factor Bcl2l10 (10 μg/mL) compared to controls. The phthalate mixture did not significantly alter gene expression or follicle counts, but ovaries exposed to the phthalate mixture (0.1 μg/mL) exhibited marginally significantly increased apoptosis as revealed by DNA fragmentation staining. Overall, these data show that parent phthalates and phthalate metabolites differentially impact ovarian function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。