Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins

扩展视网膜层状特异性的免疫球蛋白超家族代码:接触蛋白的表达和作用

阅读:5
作者:Masahito Yamagata, Joshua R Sanes

Abstract

Bipolar, amacrine, and retinal ganglion cells elaborate arbors and form synapses within the inner plexiform layer (IPL) of the vertebrate retina. Specific subsets of these neuronal types synapse in one or a few of the ≥10 sublaminae of the IPL. Four closely related Ig superfamily transmembrane adhesion molecules--Sidekick1 (Sdk1), Sdk2, Dscam, and DscamL--are expressed by non-overlapping subsets of chick retinal neurons and promote their lamina-specific arborization (Yamagata and Sanes, 2008). Here, we asked whether contactins (Cntns), six homologs of Sdks and Dscams, are expressed by and play roles in other subsets. In situ hybridization showed that cntn1-5 were differentially expressed by subsets of amacrine cells. Immunohistochemistry showed that each Cntn protein was concentrated in a subset of IPL sublaminae. To assess roles of Cntns in retinal development, we focused on Cntn2. Depletion of Cntn2 by RNA interference markedly reduced the ability of Cntn2-positive cells to restrict their arbors to appropriate sublaminae. Conversely, ectopic expression of cntn2 redirected neurites of transduced neurons to the Cntn2-positive sublaminae. Thus, both loss- and gain-of-function strategies implicate Cntn2 in lamina-specific neurite targeting. Studies in heterologous cells showed that Cntn2 mediates homophilic adhesion, but does not bind detectably to Sdks, Dscams, or other Cntns. Overexpression analysis showed that Cntns1 and 3 can also redirect neurites to appropriate sublaminae. We propose that Cntns, Sdks, and Dscams comprise an Ig superfamily code that uses homophilic interactions to promote lamina-specific targeting of retinal dendrites in IPL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。