Background and purpose
Lipid mediators (LM) play crucial roles in the complex inflammation process with respect to initiation, maintenance, and resolution. Proinflammatory leukotrienes (LTs), generated by 5-lipoxygenase (LOX) and the 5-LOX-activating protein (FLAP), initiate and maintain inflammation while specialized pro-resolving mediators (SPMs) formed by various LOXs as key enzymes promote inflammation resolution and the return to homeostasis. Since 5-LOX also contributes to SPM biosynthesis, smart pharmacological manipulation of the 5-LOX pathway and accompanied activation of 12-/15-LOXs may accomplish suppression of LT formation but maintain or even elevate SPM formation. Here, we demonstrated that the FLAP antagonist BRP-201 possesses such pharmacological profile and causes a switch from LT toward SPM formation.
Conclusion
BRP-201 acts as FLAP antagonist but also as 12/15-LOX activator switching formation of pro-inflammatory LTs toward inflammation-resolving SPM, which reflects a beneficial pharmacological profile for intervention in inflammation.
Purpose
Lipid mediators (LM) play crucial roles in the complex inflammation process with respect to initiation, maintenance, and resolution. Proinflammatory leukotrienes (LTs), generated by 5-lipoxygenase (LOX) and the 5-LOX-activating protein (FLAP), initiate and maintain inflammation while specialized pro-resolving mediators (SPMs) formed by various LOXs as key enzymes promote inflammation resolution and the return to homeostasis. Since 5-LOX also contributes to SPM biosynthesis, smart pharmacological manipulation of the 5-LOX pathway and accompanied activation of 12-/15-LOXs may accomplish suppression of LT formation but maintain or even elevate SPM formation. Here, we demonstrated that the FLAP antagonist BRP-201 possesses such pharmacological profile and causes a switch from LT toward SPM formation.
Results
Comprehensive LM metabololipidomics with activated human monocyte-derived macrophages (MDM) of M1 or M2 phenotype showed that BRP-201 strongly inhibits LT formation induced by bacterial exotoxins. In parallel, SPM levels and 12/15-LOX-derived products were markedly elevated, in particular in M2-MDM. Intriguingly, in unstimulated MDM, BRP-201 induced formation of 12/15-LOX products including SPM and caused 15-LOX-1 subcellular redistribution without affecting 5-LOX. Experiments with HEK293 cells stably expressing either 5-LOX with or without FLAP, 15-LOX-1 or 15-LOX-2 confirmed suppression of 5-LOX product formation due to FLAP antagonism by BRP-201 but activated 15-LOX-1 in the absence of FLAP. Finally, in zymosan-induced murine peritonitis, BRP-201 (2 mg/kg, ip) lowered LT levels but elevated 12/15-LOX products including SPMs.
