Hydrogen sulfide promotes immunomodulation of gingiva-derived mesenchymal stem cells via the Fas/FasL coupling pathway

硫化氢通过 Fas/FasL 偶联途径促进牙龈间充质干细胞的免疫调节

阅读:5
作者:Ruili Yang, Tingting Yu, Dawei Liu, Songtao Shi, Yanheng Zhou

Background

Mesenchymal stem cells derived from gingiva (GMSCs) display profound immunomodulation properties in addition to self-renewal and multilineage differentiation capacities. Hydrogen sulfide (H2S) is not only an environmental pollutant, but also is an important biological gas transmitter in health and disease.

Conclusions

These findings showed that H2S was required to maintain immunomodulation of GMSCs, which was mediated by Fas/FasL coupling-induced T-cell apoptosis.

Methods

We used an in-vitro coculture system and a mouse colitis model to compare the immunomodulatory effects between control and H2S-deficient GMSCs. The flow cytometry analysis was used for T-cell apoptosis and T-helper 17 (Th17) and regulatory T (Treg) cell differentiation.

Results

We revealed that GMSCs exerted their immunomodulatory effect by inducing T-cell apoptosis, promoting Treg cell polarization, and inhibiting Th17 cell polarization in vitro. The levels of H2S regulated the immunomodulatory effect of GMSCs. Mechanically, H2S deficiency downregulated the expression of Fas in GMSCs, resulting in reduced secretion of monocyte chemotactic protein 1 (MCP-1), which in turn led to decreased T-cell migration to GMSCs mediated by MCP-1. Moreover, H2S deficiency downregulated the expression of Fas ligand (FasL) in GMSCs. The Fas/FasL coupling-induced T-cell apoptosis by GMSCs was attenuated in H2S-deficient GMSCs. Consistent with this, H2S-deficient GMSCs showed attenuated therapeutic effects on colitis in vivo, which could be restored by treatment with the H2S donor, NaHS. Conclusions: These findings showed that H2S was required to maintain immunomodulation of GMSCs, which was mediated by Fas/FasL coupling-induced T-cell apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。