Apple polyphenol extract modulates bile acid metabolism and gut microbiota by regulating the circadian rhythms in daytime-restricted high fat diet feeding C57BL/6 male mice

苹果多酚提取物通过调节白天限制高脂饮食喂养的 C57BL/6 雄性小鼠的昼夜节律来调节胆汁酸代谢和肠道微生物群

阅读:4
作者:Yuan Cui, Yan Yin, Shilan Li, Zhengli Wu, Yisha Xie, Qingfan Qian, Hao Yang, Xinli Li

Abstract

The homeostasis of circadian clock linked to bile acid (BA) metabolism and gut microbiota has profound benefits in maintaining the health status of the host. The aim of this study was to investigate the prevention and regulation of apple polyphenol extract (APE) on BA metabolism and gut microbiota by means of modulation of circadian rhythms in mice. Eighty male C57BL/6 mice were randomized into four groups: 24-hour ad libitum standard chow group (AC), ad libitum HFD group (AF), restricted 12 h daytime HFD feeding group (DF), and daytime HFD feeding with APE treatment group (DP). Five weeks later, the mice were sacrificed at 6 h intervals over a 24 h period. The results showed that APE decreased body weight and induced daily rhythms of Cry1 and Rorα in the suprachiasmatic nucleus (SCN) and Clock, Cry1 and Cry2 in the ileum in daytime HFD mice. APE significantly increased the expression of hepatic FXR at ZT0 and BSEP at ZT12 and inhibited the expression of ileac FXR at ZT12, reduced levels of fecal TBAs, secondary BAs, and unconjugated BAs at ZT0. Meanwhile, APE regulated the diversity and composition of the gut microbiota, and increased the abundance of probiotics. Therefore, our work revealed that APE as a clock-regulating natural compound could modulate BA metabolism and gut microbiota and protect against circadian disruption in a clock-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。