Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

黑质多巴胺神经元的起搏率和去极化阻滞:躯体钠通道平衡行为

阅读:6
作者:Kristal R Tucker, Marco A Huertas, John P Horn, Carmen C Canavier, Edwin S Levitan

Abstract

Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (Na(V)) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density, and gating of Na(V) currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment and Na(V) channels are distributed in multiple dendrites, selective reduction of Na(V) channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic Na(V) current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when Na(V) currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold Na(V) current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic Na(V) channels. More generally, we conclude that the somatodendritic distribution of Na(V) channels is a major determinant of repetitive spiking frequency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。