Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice

长链非编码 RNA Malat-1 在小鼠压力超负荷诱发的心脏重塑和衰竭过程中是可有可无的

阅读:5
作者:Tim Peters, Steffie Hermans-Beijnsberger, Abdelaziz Beqqali, Nicole Bitsch, Shinichi Nakagawa, Kannanganattu V Prasanth, Leon J de Windt, Ralph J van Oort, Stephane Heymans, Blanche Schroen

Background

Long non-coding RNAs (lncRNAs) are a class of RNA molecules with diverse regulatory functions during embryonic development, normal life, and disease in higher organisms. However, research on the role of lncRNAs in cardiovascular diseases and in particular heart failure is still in its infancy. The exceptionally well conserved nuclear lncRNA Metastasis associated in lung adenocarcinoma transcript 1 (Malat-1) is a regulator of mRNA splicing and highly expressed in the heart. Malat-1 modulates hypoxia-induced vessel growth, activates ERK/MAPK signaling, and scavenges the anti-hypertrophic microRNA-133. We therefore hypothesized that Malat-1 may act as regulator of cardiac hypertrophy and failure during cardiac pressure overload induced by thoracic aortic constriction (TAC) in mice.

Conclusion

These findings confirm a role for the lncRNA Malat-1 in mRNA splicing. However, no critical role for Malat-1 was found in pressure overload-induced heart failure in mice, despite its reported role in vascularization, ERK/MAPK signaling, and regulation of miR-133.

Results

Absence of Malat-1 did not affect cardiac hypertrophy upon pressure overload: Heart weight to tibia length ratio significantly increased in WT mice (sham: 5.78±0.55, TAC 9.79±1.82 g/mm; p<0.001) but to a similar extend also in Malat-1 knockout (KO) mice (sham: 6.21±1.12, TAC 8.91±1.74 g/mm; p<0.01) with no significant difference between genotypes. As expected, TAC significantly reduced left ventricular fractional shortening in WT (sham: 38.81±6.53%, TAC: 23.14±11.99%; p<0.01) but to a comparable degree also in KO mice (sham: 37.01±4.19%, TAC: 25.98±9.75%; p<0.05). Histological hallmarks of myocardial remodeling, such as cardiomyocyte hypertrophy, increased interstitial fibrosis, reduced capillary density, and immune cell infiltration, did not differ significantly between WT and KO mice after TAC. In line, the absence of Malat-1 did not significantly affect angiotensin II-induced cardiac hypertrophy, dysfunction, and overall remodeling. Above that, pressure overload by TAC significantly induced mRNA levels of the hypertrophy marker genes Nppa, Nppb and Acta1, to a similar extend in both genotypes. Alternative splicing of Ndrg2 after TAC was apparent in WT (isoform ratio; sham: 2.97±0.26, TAC 1.57±0.40; p<0.0001) and KO mice (sham: 3.64±0.37; TAC: 2.24±0.76; p<0.0001) and interestingly differed between genotypes both at baseline and after pressure overload (p<0.05 each).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。