Transcutaneous vagus nerve stimulation modulates depression-like phenotype induced by high-fat diet via P2X7R/NLRP3/IL-1β in the prefrontal cortex

经皮迷走神经刺激通过前额叶皮质中的 P2X7R/NLRP3/IL-1β 调节高脂饮食引起的抑郁样表型

阅读:6
作者:Shaoyuan Li, Yuzhengheng Zhang, Yu Wang, Zixuan Zhang, Chen Xin, Yifei Wang, Peijing Rong

Background

Depression is a common psychiatric disorder in diabetic patients. Depressive mood associated with obesity/metabolic disorders is related to the inflammatory response caused by long-term consumption of high-fat diets, but its molecular mechanism is unclear. In this study, we investigated whether the antidepressant effect of transcutaneous auricular vagus nerve stimulation (taVNS) in high-fat diet rats works through the P2X7R/NLRP3/IL-1β pathway.

Conclusion

The P2X7R/NLRP3/IL-1β signaling pathway may play an important role in the antidepressant-like behavior of taVNS, which provides a promising mechanism for taVNS clinical treatment of diabetes combined with depression.

Methods

We first used 16S rRNA gene sequencing analysis and LC-MS metabolomics assays in Zucker diabetic fatty (ZDF) rats with long-term high-fat diet (Purina #5008) induced significant depression-like behaviors. Next, the forced swimming test (FST) and open field test (OFT) were measured to evaluate the antidepressive effect of taVNS. Immunofluorescence and western blotting (WB) were used to measure the microglia state and the expression of P2X7R, NLRP3, and IL-1β in PFC.

Results

Purina#5008 diet induced significant depression-like behaviors in ZDF rats and was closely related to purine and inflammatory metabolites. Consecutive taVNS increased plasma insulin concentration, reduced glycated hemoglobin and glucagon content in ZDF rats, significantly improved the depressive-like phenotype in ZDF rats through reducing the microglia activity, and increased the expression of P2X7R, NLRP3, and IL-1β in the prefrontal cortex (PFC).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。