Downregulation of the NLRP3 inflammasome by adiponectin rescues Duchenne muscular dystrophy

脂联素下调 NLRP3 炎症小体可挽救杜氏肌营养不良症

阅读:7
作者:Raphaël Boursereau, Michel Abou-Samra, Sophie Lecompte, Laurence Noel, Sonia M Brichard

Background

The hormone adiponectin (ApN) exerts powerful anti-inflammatory effects on skeletal muscle and can reverse devastating myopathies, like Duchenne muscular dystrophy (DMD), where inflammation exacerbates disease progression. The NLRP3 inflammasome plays a key role in the inflammation process, and its aberrant activation leads to several inflammatory or immune diseases. Here we investigated the expression of the NLRP inflammasome in skeletal muscle and its contribution to DMD.

Conclusions

The NLRP3 inflammasome plays a key pathogenic role in DMD and muscle inflammation, thereby opening new therapeutic perspectives for these and other related disorders.

Results

We find that NLRP3 is expressed in skeletal muscle and show that ApN downregulates NLRP3 via its anti-inflammatory mediator, miR-711. This repression occurs both in vitro in C2C12 myotubes and in vivo after either local (via muscle electrotransfer) or systemic (by using transgenic mice) ApN supplementation. To explore the role of the NLRP3 inflammasome in a murine model of DMD, we crossed mdx mice with Nlrp3-knockout mice. In mdx mice, all components of the inflammasome were upregulated in muscle, and the complex was overactivated. By contrast, in mdx mice lacking Nlrp3, there was a reduction in caspase-1 activation, inflammation and oxidative stress in dystrophic muscle, and these mice showed higher global muscle force/endurance than regular mdx mice as well as decreased muscle damage. To investigate the relevance of NLPR3 regulation in a human disease context, we characterized NLRP3 expression in primary cultures of myotubes from DMD subjects and found a threefold increase compared to control subjects. This overexpression was attenuated by ApN or miR-711 mimic treatments. Conclusions: The NLRP3 inflammasome plays a key pathogenic role in DMD and muscle inflammation, thereby opening new therapeutic perspectives for these and other related disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。