Hyaluronan supports the limbal stem cell phenotype during ex vivo culture

透明质酸在体外培养过程中支持角膜缘干细胞表型

阅读:4
作者:Sudan Puri #, Isabel Y Moreno #, Mingxia Sun, Sudhir Verma, Xiao Lin, Tarsis F Gesteira, Vivien J Coulson-Thomas

Background

Hyaluronan (HA) has previously been identified as an integral component of the limbal stem cell niche in vivo. In this study, we investigated whether a similar HA matrix is also expressed in vitro providing a niche supporting limbal epithelial stem cells (LESCs) during ex vivo expansion. We also investigated whether providing exogenous HA in vitro is beneficial to LESCs during ex vivo expansion. Method: Human LESCs (hLESCs) were isolated from donor corneas and a mouse corneal epithelial progenitor cell line (TKE2) was obtained. The HA matrix was identified surrounding LESCs in vitro using immunocytochemistry, flow cytometry and red blood exclusion assay. Thereafter, LESCs were maintained on HA coated dishes or in the presence of HA supplemented in the media, and viability, proliferation, cell size, colony formation capabilities and expression of putative stem cell markers were compared with cells maintained on commonly used coated dishes.

Conclusion

Our data show that both exogenous and endogenous HA help to maintain the LESC phenotype. Exogenous HA provides improved culture conditions for LESC during ex vivo expansion. Thus, HA forms a favorable microenvironment for LESCs during ex vivo expansion and, therefore, could be considered as an easy and cost-effective substrate and/or supplement for culturing LESCs in the clinic.

Results

hLESCs and TKE2 cells express an HA-rich matrix in vitro, and this matrix is essential for maintaining LESCs. Further supplying exogenous HA, as a substrate and supplemented to the media, increases LESC proliferation, colony formation capabilities and the expression levels of putative limbal stem cell markers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。