Ginsenoside Rg1 Exerts Anti-inflammatory Effects via G Protein-Coupled Estrogen Receptor in Lipopolysaccharide-Induced Microglia Activation

人参皂苷 Rg1 在脂多糖诱导的小胶质细胞活化中通过 G 蛋白偶联雌激素受体发挥抗炎作用

阅读:7
作者:Xian-Qi Gao, Zhong-Rui Du, Liang-Jie Yuan, Wen-Di Zhang, Lei Chen, Ji-Jun Teng, Man-Sau Wong, Jun-Xia Xie, Wen-Fang Chen

Abstract

Neuroinflammation plays a pivotal role in the pathogenesis of Parkinson's disease. Ginsenoside Rg1, the most active ingredient of ginseng, has been reported to exert neuroprotective effects via estrogen and glucocorticoid receptors. The present study evaluated the involvement of the G protein-coupled estrogen receptor (GPER) in the anti-inflammatory effects of ginsenoside Rg1 against lipopolysaccharide (LPS)-induced microglia activation in the BV2 microglial cell line and ventral mesencephalic primary microglial culture. The pharmacological blockade and lentivirus-mediated small interfering RNA (siRNA) knockdown of GPER were used to study the underlying mechanism. Rg1 attenuated LPS-induced upregulation of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA and protein levels. The GPER antagonist G15 blocked the inhibitory effects of Rg1 and the GPER-specific agonist G1 on LPS-induced microglia activation. Rg1 mimicked the effects of G1 by inhibiting the LPS-induced activation of nuclear transcription factor-kappa B (NF-κB) and mitogen activated protein kinase signaling pathways, which was also blocked by G15. Moreover, lentivirus-mediated siRNA knockdown of GPER inhibited the anti-inflammatory effects of Rg1. Taken together, our results indicate that GPER is involved in the anti-inflammatory effects of Rg1 against LPS-induced microglia activation. These findings provide a new biological target of Rg1 for the treatment of neuroinflammatory disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。