Optimization of TripleTOF spectral simulation and library searching for confident localization of phosphorylation sites

优化 TripleTOF 光谱模拟和库搜索,以确定磷酸化位点的定位

阅读:9
作者:Ayano Takai, Tomoya Tsubosaka, Yasuhiro Hirano, Naoki Hayakawa, Fumitaka Tani, Pekka Haapaniemi, Veronika Suni, Susumu Y Imanishi

Abstract

Tandem mass spectrometry (MS/MS) has been used in analysis of proteins and their post-translational modifications. A recently developed data analysis method, which simulates MS/MS spectra of phosphopeptides and performs spectral library searching using SpectraST, facilitates confident localization of phosphorylation sites. However, its performance has been evaluated only on MS/MS spectra acquired using Orbitrap HCD mass spectrometers so far. In this study, we have investigated whether this approach would be applicable to another type of mass spectrometers, and optimized the simulation and search conditions to achieve sensitive and confident site localization. Synthetic phosphopeptides and enriched K562 cell phosphopeptides were analyzed using a TripleTOF 6600 mass spectrometer before and after enzymatic dephosphorylation. Dephosphorylated peptides identified by X!Tandem database searching were subjected to spectral simulation of all possible single phosphorylations using SimPhospho software. Phosphopeptides were identified and localized by SpectraST searching against a library of the simulated spectra. Although no synthetic phosphopeptide was localized at 1% false localization rate under the previous conditions, optimization of the spectral simulation and search conditions for the TripleTOF datasets achieved the localization and improved the sensitivity. Furthermore, the optimized conditions enabled sensitive localization of K562 phosphopeptides at 1% false discovery and localization rates. These results suggest that accurate phosphopeptide simulation of TripleTOF MS/MS spectra is possible and the simulated spectral libraries can be used in SpectraST searching for confident localization of phosphorylation sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。