Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells

奶山羊雄性生殖干细胞中 Tet1 和组蛋白甲基化动力学的改变

阅读:6
作者:Liming Zheng, Yuanxin Zhai, Na Li, Chongyang Wu, Haijing Zhu, Zhuying Wei, Chunling Bai, Guangpeng Li, Jinlian Hua

Conclusions

Taken together, our data suggest that Tet1 had novel and dynamic roles for regulating maintenance of pluripotency and proliferation of mGSCs by forming complexes with PCNA and histone methylation dynamics. This may provide new solutions for mGSCs stability and livestock mGSC cell line establishment.

Methods

An immortalized dairy goat mGSC cell line bearing mouse Tet1 (mTet1) gene was screened and characteristics of the cells were assayed by quantitative real-time PCR (qRT-PCR), immunofluorescence assay, western blotting, fluorescence activated cell sorting (FACS) and use of the cell counting kit (CCK8) assay.

Results

The screened immortalized dairy goat mGSC cell line bearing mTet1, called mGSC-mTet1 cells was treated with optimal doxycycline (Dox) concentration to maintain Tet1 gene expression. mGSC-mTet1 cells proliferated at a significantly greater rate than wild-type mGSCs, and mGSCs-specific markers such as proliferating cell nuclear antigen (PCNA), cyclinD1 (CCND1), GDNF family receptor alpha 1 (Gfra1) and endogenic Tet1, Tet2 were upregulated. The cells exhibited not only reduction in level of histone methylation but also changes in nuclear location of that methylation marker. While H3K9me3 was uniformly distributed throughout the nucleus of mGSC-mTet1 cells, it was present in only particular locations in mGSCs. H3K27me3 was distributed surrounding the edges of nuclei of mGSC-mTet1 cells, while it was uniformly distributed throughout nuclei of mGSCs. Our results conclusively demonstrate that modification of mGSCs with mTet1 affected mGSC maintenance and seemed to promote establishment of stable goat mGSC cell lines. Conclusions: Taken together, our data suggest that Tet1 had novel and dynamic roles for regulating maintenance of pluripotency and proliferation of mGSCs by forming complexes with PCNA and histone methylation dynamics. This may provide new solutions for mGSCs stability and livestock mGSC cell line establishment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。