BMAL1 regulates MUC1 overexpression in ovalbumin-induced asthma

BMAL1 调节卵清蛋白诱发哮喘中的 MUC1 过度表达

阅读:5
作者:Lingling Tang, Xiaona Zhang, Yanqiu Xu, Li Liu, Xianhong Sun, Bohan Wang, Keyao Yu, Hui Zhang, Xia Zhao, Xiongbiao Wang

Abstract

Asthma often presents with a daily rhythm; however, the underlying mechanisms remain unclear. Circadian rhythm genes have been proposed to regulate inflammation and mucin expression. Here, ovalbumin (OVA)-induced mice and serum shock human bronchial epidermal cells (16HBE) were used in in vivo and in vitro models, respectively. We constructed a brain and muscle ARNT-like 1 (BMAL1) knockdown 16HBE cell line to analyze the effects of rhythmic fluctuations on mucin expression. Serum immunoglobulin E (IgE) and circadian rhythm genes in asthmatic mice showed rhythmic fluctuation amplitude. Mucin (MUC) 1 and MUC5AC expression was increased in the lung tissue of the asthmatic mice. MUC1 expression was negatively correlated with that of the circadian rhythm genes, particularly BMAL1 (r = -0.546, P = 0.006). There was also a negative correlation between BMAL1 and MUC1 expression (r = -0.507, P = 0.002) in the serum shock 16HBE cells. BMAL1 knockdown negated the rhythmic fluctuation amplitude of MUC1 expression and upregulated MUC1 expression in the 16HBE cells. These results indicate that the key circadian rhythm gene, BMAL1, causes periodic changes in airway MUC1 expression in OVA-induced asthmatic mice. Targeting BMAL1 to regulate periodic changes in MUC1 expression may, therefore, improve asthma treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。