Constraint-Induced Movement Therapy Modulates Neuron Recruitment and Neurotransmission Homeostasis of the Contralesional Cortex to Enhance Function Recovery after Ischemic Stroke

强制性运动疗法调节对侧皮质的神经元募集和神经传递稳态以增强缺血性中风后的功能恢复

阅读:8
作者:Anjing Zhang, Ying Xing, Jiayuan Zheng, Congqin Li, Yan Hua, Jian Hu, Zhanzhuang Tian, Yulong Bai

Abstract

Stroke often results in long-term and severe limb dysfunction for a majority of patients, significantly limiting their activities and social participation. Constraint-induced movement therapy (CIMT) is a rehabilitation approach aimed explicitly at enhancing upper limb motor function following a stroke. However, the precise mechanism remains unknown. This study explores how CIMT may alleviate forelimb paralysis in ischemic mice, potentially through structural and functional remodeling of brain regions beyond the infarct area, especially the contralateral cortex. We demonstrated that CIMT recruits neurons from the contralesional cortex into the network that innervates the affected forelimb, as evidenced by PRV retrograde nerve tracing. Additionally, we investigated how CIMT influences synaptic plasticity in the contralateral cortex by evaluating synaptic growth marker levels and neurotransmission's homeostatic regulation. Our findings uncover a rehabilitative mechanism by which CIMT treats ischemic stroke, characterized by increased recruitment of neurons from the contralateral cortex into the network that innervates the affected forelimb, facilitated by homeostatic regulation of neurotransmission.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。