Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling

基质硬度通过激活 BCL9L/Wnt/β-catenin 信号促进神经胶质瘤细胞干细胞化

阅读:5
作者:Bei Tao, Yi Song, Yao Wu, Xiaobo Yang, Tangming Peng, Lilei Peng, Kaiguo Xia, Xiangguo Xia, Ligang Chen, Chuanhong Zhong

Abstract

Matrix stiffness is a key physical characteristic of the tumor microenvironment and correlates tightly with tumor progression. Here, we explored the association between matrix stiffness and glioma development. Using atomic force microscopy, we observed higher matrix stiffness in highly malignant glioma tissues than in low-grade/innocent tissues. In vitro and in vivo analyses revealed that culturing glioma cells on stiff polyacrylamide hydrogels enhanced their proliferation, tumorigenesis and CD133 expression. Greater matrix stiffness could obviously up-regulated the expression of BCL9L, thereby promoting the activation of Wnt/β-catenin signaling and ultimately increasing the stemness of glioma cells. Inhibiting Wnt/β-catenin signaling using gigantol consistently improved the anticancer effects of chemotherapy and radiotherapy in mice with subcutaneous glioma tumors. These findings demonstrate that a stiffer matrix increases the stemness of glioma cells by activating BCL9L/Wnt/β-catenin signaling. Moreover, we have provided a potential strategy for clinical glioma treatment by demonstrating that gigantol can improve the effectiveness of traditional chemotherapy/radiotherapy by suppressing Wnt/β-catenin signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。