Therapeutic Hypothermia Enhances Cold-Inducible RNA-Binding Protein Expression and Inhibits Mitochondrial Apoptosis in a Rat Model of Cardiac Arrest

治疗性低温可增强心脏骤停大鼠模型中冷诱导 RNA 结合蛋白的表达并抑制线粒体凋亡

阅读:5
作者:Lin Wu, He-Liang Sun, Yu Gao, Kang-Li Hui, Miao-Miao Xu, Hao Zhong, Man-Lin Duan

Abstract

Therapeutic hypothermia is well known for its protective effect against brain injury after cardiac arrest, but the exact mechanism remains unclear. Cold-inducible RNA-binding protein (CIRP), a member of cold shock protein, enables mammalian cells to withstand decreased temperature by regulating gene translation. However, the role of CIRP in global cerebral ischemia after therapeutic hypothermia has not been clearly elucidated. In the present study, rats resuscitated from 4 min of cardiac arrest were separately treated with therapeutic hypothermia (immediately after return of spontaneous circulation (ROSC); targeted temperature at 33 °C) and therapeutic normothermia (targeted temperature at 36.8 °C) for 6 h. The hippocampus was harvested at 0 h (baseline), 6 h, 12 h, 1 day, 3 days, and 7 days after ROSC. The expression of CIRP messenger RNA (mRNA) was assessed by real-time PCR. CIRP and mitochondrial apoptosis-associated proteins were tested by Western blot. The histological changes and neurological function were respectively evaluated by hematoxylin-eosin staining and neurological deficit score (NDS). Compared with baseline, rats resuscitated from cardiac arrest showed increased expression of CIRP, Bax, Caspase 9, and Caspase 3 and decreased expression of Bcl-2 in hippocampus (P < 0.05). However, therapeutic hypothermia after ROSC alleviated the alterations of Bax, Caspase 9, Caspase 3, and Bcl-2, while further increased the hippocampal expression of CIRP mRNA and protein, when compared with the normothermia rats (P < 0.05). In addition, compared with the therapeutic normothermia rats, histopathological damage in CA1 zone and NDS were respectively decreased and increased in the hypothermia rats (P < 0.05). Our findings suggest that 32 °C therapeutic hypothermia exerts an important neuroprotective effects by up-regulating CIRP expression and inhibiting mitochondrial apoptosis factor production in the cardiac arrest rat model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。