Miscanthus-Derived Energy Storage System Material Production

芒草衍生的储能系统材料生产

阅读:3
作者:Fikret Muge Alptekin, Nurhan Turgut Dunford, Melih Soner Celiktas

Abstract

Carbon derived from various biomass sources has been evaluated as support material for thermal energy storage systems. However, process optimization of Miscanthus-derived carbon to be used for encapsulating phase change materials has not been reported to date. In this study, process optimization to evaluate the effects of selected operation parameters of pyrolysis time, temperature, and biomass:catalyst mass ratio on the surface area and pore volume of produced carbon is conducted using response surface methodology. In the process, ZnCl2 is used as a catalyst to promote high pore volume and area formation. Two sets of optimum conditions with different pyrolysis operation parameters in order to produce carbons with the highest pore area and volume are determined as 614 °C, 53 min, and 1:2 biomass to catalyst ratio and 722 °C, 77 min, and 1:4 biomass to catalyst ratio with 1415.4 m2/g and 0.748 cm3/g and 1499.8 m2/g and 1.443 cm3/g total pore volume, respectively. Carbon material produced at 614 °C exhibits mostly micro- and mesosized pores, while carbon obtained at 722 °C comprises mostly of meso- and macroporous structures. Findings of this study demonstrate the significance of process optimization for designing porous carbon material to be used in thermal and electrochemical energy storage systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。