Autism Spectrum Disorder Model Mice Induced by Prenatal Exposure to Valproic Acid Exhibit Enhanced Empathy-Like Behavior via Oxytocinergic Signaling

产前暴露于丙戊酸诱发的自闭症谱系障碍模型小鼠通过催产素信号表现出增强的同理心样行为

阅读:7
作者:Kaito Takayama, Shota Tobori, Chihiro Andoh, Masashi Kakae, Masako Hagiwara, Kazuki Nagayasu, Hisashi Shirakawa, Yukio Ago, Shuji Kaneko

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms, including impairments in social behavior and repetitive interests. Recent studies have revealed that individuals with ASD also display decreased empathy, ultimately leading to difficulties in social relationships; however, another report indicated that individuals with ASD have enhanced emotional empathy. Nonetheless, the neurobiological mechanisms underlying altered empathy in individuals with ASD remain unclear. In this study, we assessed empathy-like behaviors in valproic acid (VPA)-treated mice-a mouse model of ASD with observational fear learning. We then investigated the brain regions and signaling systems responsible for the altered empathy-like behaviors in VPA-treated mice. As a result, mice prenatally exposed to VPA displayed increased empathy-like behaviors, which were not attributed to altered sensitivity to auditory stimuli or enhanced memory for pain-related contexts. Immunohistochemical analysis revealed that the number of c-Fos positive oxytocinergic neurons in the paraventricular nucleus of the hypothalamus (PVN) was significantly higher in VPA-treated mice after observational fear learning. Finally, we found that pretreatment with L-368899, an antagonist of the oxytocin receptor, repressed the empathetic behavior in VPA-treated mice. These results suggest that VPA-treated ASD model animals showed increased emotional empathy-like behaviors through the hyperactivation of PVN oxytocinergic neurons for the first time. Further investigation of this hyperactivity will help to identify extrinsic stimuli and the condition which are capable of activation of PVN oxytocinergic neurons and to identify novel approach to enhance oxytocin signaling, which ultimately pave the way to development of novel therapy for ASD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。