β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming

β-肌动蛋白调节异染色质景观,这对于直接重编程过程中神经元程序的最佳诱导至关重要

阅读:7
作者:Xin Xie, Robertas Jankauskas, Aslam M A Mazari, Nizar Drou, Piergiorgio Percipalle

Abstract

During neuronal development, β-actin serves an important role in growth cone mediated axon guidance. Consistent with this notion, in vivo ablation of the β-actin gene leads to abnormalities in the nervous system. However, whether β-actin is involved in the regulation of neuronal gene programs is not known. In this study, we directly reprogramed β-actin+/+ WT, β-actin+/- HET and β-actin-/- KO mouse embryonic fibroblast (MEFs) into chemically induced neurons (CiNeurons). Using RNA-seq analysis, we profiled the transcriptome changes among the CiNeurons. We discovered that induction of neuronal gene programs was impaired in KO CiNeurons in comparison to WT ones, whereas HET CiNeurons showed an intermediate levels of induction. ChIP-seq analysis of heterochromatin markers demonstrated that the impaired expression of neuronal gene programs correlated with the elevated H3K9 and H3K27 methylation levels at gene loci in β-actin deficient MEFs, which is linked to the loss of chromatin association of the BAF complex ATPase subunit Brg1. Together, our study shows that heterochromatin alteration in β-actin null MEFs impedes the induction of neuronal gene programs during direct reprograming. These findings are in line with the notion that H3K9Me3-based heterochromatin forms a major epigenetic barrier during cell fate change.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。